
A Low-Cost Open-Source Visual Odometry
Solution for Coastal ROV

ADVISERS: AARON MARBURG, ZACHARY RANDELL, CLYDE MCQUEEN

SPONSORS: SEATTLE AQUARIUM, UW APPLIED PHYSICS LABORATORY

RESULTS
• Remotely operated vehicles (ROVs) are often used for surveying shallow subtidal regions

• BlueROV2 lacks the ability to measure its velocity and altitude, assisting in navigation

• Doppler velocity logs (DVL) are a solution; however, they are too expensive

• Our project aims to integrate a visual odometry system with a BlueROV2 and make real

time measurements

CONCLUSION & FUTURE WORK

SYSTEM ARCHITECTURE

REQUIREMENTS

INTRODUCTION

• Achieve no more than 1% error in velocity measurements compared to ground truth

• Maintain accurate depth measurement within 5% of true value

• Process and deliver data at minimum 5Hz, optimal 10Hz

• Function reliably in variable underwater conditions with limited visibility

• Real-time computation on Jetson Nano with maximum 300ms latency from image

capture to velocity output

• Interface with ROV's Raspberry Pi via Ethernet/WiFi for data transmission

PLOTTED TRAJECTORY AND ODOMETRY FROM TESTS

CALIBRATION & PREPROCESSING

ORB-SLAM3 & ODOMETRY
ORB-SLAM3
• A VSLAM program that receives stereo

images and output relative pose
between cameras and the world

• Fine-tuned to function better in near-
seabed underwater environment

ODOMETRY WRAPPER
• Establish ROS data communication method for

ORB-SLAM3's in/output
• Fetch the pose of map point from ORB-SLAM3

and publish position, orientation, linear and
angular twist with covariance

• Estimate the altitude using 3D point cloud

This project demonstrates a live underwater visual odometry and communication system

by integrating visual SLAM and MAVLink messaging on a BlueROV2 platform.

The next steps for this project will be to:

• Improve accuracy of the system by ensuring parameters are fully tuned

• Implement a functioning ROS2 – ORBSLAM3 VIO system with a fully calibrated system

• Implement with CUDA to increase the performance

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Detected Features in each Frame with

and without Processing

Unprocessed Processed

Figure 5. Comparison of detected features after
processing the images with information entropy

and adaptive sharpening

Figure 6. Feature points Figure 7. 3D point cloud

Figure 1. System Architecture

Figure 8. MAVLink pipeline with our Nano and the internals of the ROV
Figure 2. Computational hardware of our system (right) is enclosed in the

capsule mounted on the ROV with camera and light facing downward (left)

Figure 4. (a) Rectified and (b) pre-
processed images used by ORB-SLAM

(a)

(b)

Figure 3. Computer vision pipeline, takes in stereo camera feed and outputs odometry

MAVLINK

COMPUTER VISION OVERVIEW

Figure 9. Test running the entire system in real-time at the pier (b and c) and the trajectory
of ROV estimated by ORB-SLAM (a)

• Generated point cloud of features, while plotting the traversed trajectory

• Output pose, twist, and depth to ROS topics

• MAVLink displays values from topics into QGroundControl

• Our system consists of software and hardware components, where software system is

implemented on a Jetson Nano, communicating with the hardware components via

Robot Operating System 2 (ROS2)

• After calibration for lens distortion and object sizing, stereo camera and IMU drivers

publish data to odometry wrapper, which is then sent to ORB-SLAM3 to compute for

pose, orientation, and mapping

• After the computation, ORB-SLAM3 sends back the pose and orientation data to the

odometry wrapper as the source to compute odometry and altitude data

• Odometry, altitude, and orientation data from IMU are sent through MAVLINK to the EKF

on Raspberry Pi board on BlueROV2

• Finally, BlueROV2 can also transmit depth value of BAR30 to the Jetson Nano to verify the

accuracy in known and controlled environments

Our Visual Odometry implementation showed promising results for sending velocity data,

but showed higher noise, lower reliability, and increased outliers compared to the DVL.

Figure 10. (a) Visual Odometry Implementation Test Results and (b) DVL Results
(b)(a)

(a) (b)

Figure 11. (a) Visual Odometry Implementation Test Results and (b) DVL Results

Our implementation showed consistent results in sending altitude values but dipped to

zero centimeters at times. This was due to ORB-SLAM3 Odometry not detecting features.

(a) (b) (c)

VISION POSITION DELTA

DISTANCE SENSOR

ORBSLAM achieved a relative error of 4.85% relative to the speed ground truth, compared

to 4.42% for the DVL. This indicates that the implementation is moving in the right direction

and could closely approach DVL-level performance with further parameter optimization.

	Slide 1

